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ABSTRACT 
Hyperdimensional Computing (HDC) offers a powerful brain-inspired paradigm for data representation, leveraging 

high-dimensional vectors to encode and manipulate information. However, effective spatial encoding remains a 

significant challenge, especially for AI applications that require spatial awareness, such as robotics, navigation, and 

contextual reasoning. Traditional spatial encoding techniques—such as orthogonal indexing or Gaussian-based 

kernels—struggle with preserving locality, generalizing across spatial proximity, or scaling efficiently. This study 

introduces a novel Laplace kernel-based approach to spatial encoding within the HDC framework, designed to 

address these critical limitations.The proposed method uses the Laplace function to generate similarity-decaying 

high-dimensional vectors based on spatial distance, ensuring that representations of nearby positions remain 

correlated while those of distant points diverge exponentially. Extensive experiments were conducted on spatial 

classification tasks, noise-resilience tests, and dimensional efficiency benchmarks using synthetic and real-world 

datasets. Results demonstrate that the Laplace kernel-based encoder consistently outperforms baseline methods in 

classification accuracy (achieving up to 94%), noise robustness (with minimal degradation under coordinate 

perturbations), and topological preservation, as shown in t-SNE visualizations.From an AI perspective, this 

encoding scheme supports the development of more robust, scalable, and interpretable spatial representations, 

particularly for applications in autonomous systems, embodied agents, and neuromorphic computing. The findings 

indicate that Laplace-based spatial encoding can serve as a critical enabler for the next generation of spatially 

intelligent AI systems operating in uncertain or dynamic environments. 
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INTRODUCTION 

In the era of Artificial Intelligence (AI) and machine 

learning, the need for efficient, robust, and scalable 

computational models has never been greater (Mansouri 

et al., 2024; Sarker, 2022). Traditional computational 

architectures, while powerful, are increasingly facing 

bottlenecks in memory bandwidth, energy consumption, 

and parallel scalability when applied to AI tasks that 

involve vast, high-dimensional data such as images, 

videos, and sensor signals (Khonina et al., 2024). 

Hyperdimensional Computing (HDC), inspired by 

properties of high-dimensional spaces and 

neurobiological models of cognition, offers a promising 

paradigm to address these limitations. HDC operates on 

the principle that information can be encoded, 

manipulated, and retrieved in the form of high-

dimensional vectors, known as hypervectors, providing 

a foundation for fast, noise-tolerant, and highly 

parallelizable computation suitable for AI systems. 

However, one of the critical challenges in HDC, 

especially when dealing with spatial data such as visual 

scenes, spatial sensor layouts, or robotic environment 

mapping, lies in the spatial encoding process (Asrat & 

Cho, 2024; Hassan et al., 2024). Spatial encoding is the 

task of representing spatial relationships and geometric 

structures within a high-dimensional format while 

preserving locality, similarity, and meaningful 

correlations (Lee, 2023; Zhao et al., 2023). Existing 

spatial encoding schemes in HDC often struggle with 

maintaining fine-grained spatial relationships or require 

massive redundancy to achieve acceptable performance. 

This shortcoming hinders the effectiveness of HDC in 

AI applications such as computer vision, autonomous 

navigation, urban planning simulations, and spatial 

reasoning tasks where precision and context are essential 

(He & Chen, 2024; Lifelo et al., 2024). 

To address these challenges, this study proposes a novel 

approach: leveraging Laplace Kernel Functions for 

spatial encoding within the framework of 

Hyperdimensional Computing (Zakeri et al., 2024; 

Heddes et al., 2024). Laplace kernels, known for their 

locality-preserving and smooth similarity decay 

properties, provide an elegant mathematical tool for 

capturing proximity-based relationships. By embedding 

spatial points into hypervectors through Laplace-driven 

transformations, we aim to achieve a more accurate, 

compact, and flexible representation of spatial data in 
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HDC systems, thus improving the performance of AI 

applications that rely heavily on spatial understanding. 

The Laplace kernel approach fundamentally shifts how 

spatial relationships are modeled in HDC. Traditional 

encoding methods often rely on either hard-coded spatial 

address (which are brittle) or simple Gaussian-based 

similarities (which can be too diffuse in high 

dimensions). Laplace kernels, characterized by their 

exponentially decaying similarity with distance, offer a 

middle ground: maintaining local coherence while 

allowing for meaningful global structures (Woodman & 

Mangoni, 2023; Hoekzema et al., 2022). This balance is 

especially beneficial in AI contexts where both local 

features (e.g., object boundaries) and global 

relationships (e.g., map layouts) must be captured 

simultaneously (Ko et al., 2023; Zhang et al., 2022). 

Furthermore, the introduction of a Laplace Kernel-based 

spatial encoder is highly synergistic with current trends 

in AI towards edge computing and neuromorphic 

architectures (Choi et al., 2024). Edge AI devices—

ranging from drones and autonomous vehicles to mobile 

health sensors—require extremely efficient computation 

with minimal resources (Biswas & Wang, 2023; Singh 

& Gill, 2023). Hyperdimensional representations 

enhanced by Laplace kernels could offer substantial 

gains in robustness, compression, and interpretability, 

reducing the dependency on cloud-based processing. 

Similarly, neuromorphic chips, which emulate the 

human brain's structure and function, naturally align 

with hyperdimensional operations; thus, integrating 

Laplace-based encoding could enable smarter, more 

adaptable, and energy-efficient AI systems. 

Another important aspect to consider is co-learning 

between humans and AI systems in spatially intensive 

environments (Schoonderwoerd et al., 2022; Lu et al., 

2024). For example, in human-robot collaboration 

settings like Urban Search and Rescue (USAR) 

missions, the spatial understanding of environments is 

critical (Simon et al., 2023; Chitikena et al., 2023). An 

HDC system equipped with Laplace kernel spatial 

encodings could allow AI agents to dynamically share, 

adapt, and reason about spatial knowledge with human 

teammates more efficiently. This would lead to AI 

systems that are not only better at navigation and 

mapping but also better at explaining and interpreting 

spatial decisions—a crucial feature for trustworthy AI 

(Goel et al., 2023). 

From a theoretical standpoint, the study also contributes 

to the ongoing exploration of kernel methods in high-

dimensional machine learning. While kernel methods 

are well-established in classical AI tasks (e.g., support 

vector machines), their integration into HDC remains 

relatively underexplored. Bridging these fields through 

the Laplace kernel could pave the way for a new class of 

kernelized hyperdimensional models that inherit the best 

of both worlds: the representational power of kernel 

spaces and the noise-tolerance and efficiency of HDC. 

In this research, we systematically evaluate the 

performance of Laplace Kernel-based spatial encodings 

against traditional encoding schemes. We measure key 

AI-relevant metrics such as retrieval accuracy, 

robustness to noise and occlusion, memory footprint, 

and computational efficiency. Our methodology 

involves constructing synthetic spatial datasets, such as 

2D grids and 3D environment maps, and real-world 

datasets from robotics and vision domains. Using 

standard HDC operations—binding, bundling, and 

permutation—we implement and benchmark the 

proposed encoding model. 

In conclusion, by introducing a Laplace kernel-based 

approach to spatial encoding in Hyperdimensional 

Computing, this study seeks to overcome fundamental 

challenges in AI-driven spatial reasoning. This 

innovation promises not only to enhance the 

computational toolkit for AI researchers and engineers 

but also to push the boundaries of what can be achieved 

with HDC in real-world, resource-constrained, and 

dynamic environments. As AI continues to permeate 

every aspect of modern life, from self-driving cars to 

augmented reality and smart cities, such advancements 

in computational frameworks will be critical in building 

the next generation of intelligent, adaptive, and human-

centric systems. 

METHODOLOGY 

This study presents a novel spatial encoding framework 

in Hyperdimensional Computing (HDC) using the 

Laplace kernel function, aiming to address key 

challenges in spatial representation for AI tasks. The 

methodology is structured to evaluate the effectiveness, 

robustness, and efficiency of this approach compared to 

existing spatial encoders. The steps involved span from 

dataset preparation and encoding model design to 

experimental evaluation across multiple AI-relevant 

benchmarks. 

Research Design and Objectives 

The core objective of this study is to develop and 

validate a Laplace Kernel-based spatial encoder within 

the Hyperdimensional Computing (HDC) paradigm. To 

achieve this, a specialized Laplace kernel function was 

designed to encode spatial positions into high-

dimensional vectors (hypervectors), ensuring that spatial 

proximity is effectively preserved in the encoding 

process. This novel encoding mechanism was then 

integrated into a standard HDC framework to assess its 

practical applicability. To benchmark its effectiveness, 

the Laplace-based encoder was compared with several 

baseline spatial encoding methods, including Gaussian 

kernel encoding, orthogonal address-based encoding, 

and grid encoding. The evaluation focused on key 

performance metrics such as classification accuracy, 

preservation of spatial similarity, robustness to spatial 

noise, memory efficiency, and generalization across 
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unseen spatial inputs. 

System Architecture Overview 

The proposed system architecture comprises four main 

modules designed to facilitate efficient spatial encoding 

within the Hyperdimensional Computing (HDC) 

framework. First, the Input Spatial Dataset module 

handles 2D and 3D spatial datasets representing points, 

regions, and object layouts, serving as the foundation for 

subsequent processing. Second, the Laplace Kernel 

Encoder transforms spatial coordinates into high-

dimensional hypervectors using Laplace-based 

similarity functions, preserving spatial proximity 

relationships. Third, the HDC Processing Core executes 

key HDC operations such as binding, bundling, and 

permutation to simulate learning and inference 

mechanisms over encoded spatial data. Finally, the 

Evaluation Engine calculates similarity scores, retrieval 

accuracy, and spatial relation assessments to rigorously 

measure the model's performance. All modules were 

implemented in Python and optimized to run on GPUs, 

ensuring the efficient handling of large-scale vector 

operations required for real-time or high-throughput 

applications. 

Spatial Datasets and Use Cases 

To ensure the generalizability of the findings, three 

different spatial data scenarios were selected for 

experimentation. First, a synthetic spatial grid was 

created, consisting of a uniform 2D grid with labeled 

spatial coordinates, which served to test spatial locality 

preservation and encoding consistency. Second, robotic 

navigation maps were extracted from SLAM 

(Simultaneous Localization and Mapping) datasets 

commonly used in mobile robotics; these maps 

contained information about obstacles, free spaces, and 

waypoints, making them ideal for evaluating pathfinding 

and planning tasks. Third, object arrangement layouts 

were sourced from indoor visual scene datasets such as 

SUN-RGBD and AI2-THOR, capturing the relative 

spatial positions of furniture and objects to support 

object localization and co-location learning tasks. All 

datasets underwent normalization of their spatial 

coordinates to a [0, 1] range before being processed 

through the encoding framework, ensuring consistency 

across diverse input scenarios. 

Laplace Kernel Encoding Design 

The Laplace kernel encoder transforms a spatial 

coordinate x∈Rnx \in \mathbb{R}^nx∈Rn into a high-

dimensional vector h∈RDh \in \mathbb{R}^Dh∈RD, 

using a similarity function defined as: 

K(x,y)=exp⁡(−∥x−y∥1σ) K (x, y) = \exp\left (-\frac {\|x 

- y\|_1} {\sigma} \right) K(x,y)=exp(−σ∥x−y∥1)  

Where: 

• ∥x−y∥1\|x - y\|_1∥x−y∥1 is the L1 (Manhattan) 

distance between two spatial points, 

• σ\sigmaσ is the kernel width hyperparameter 

controlling similarity decay. 

In the proposed spatial encoding approach, a set of 

MMM anchor vectors A={a1,a2,...,aM}A = \{a_1, a_2, 

..., a_M\}A={a1,a2,...,aM} is randomly initialized and 

uniformly distributed over the spatial domain. Each 

anchor is associated with a unique high-dimensional 

random base vector H={h1,h2,...,hM}H = \{h_1, h_2, ..., 

h_M\}H={h1,h2,...,hM}. For any given spatial point 

xxx, the corresponding high-dimensional representation 

hxh_xhx is computed as a weighted sum of these base 

vectors, where the weights are derived from the Laplace 

kernel similarity K(x,ai)K(x, a_i)K(x,ai) between the 

point xxx and each anchor aia_iai. Mathematically, this 

is expressed as hx=∑i=1MK(x,ai)⋅hih_x = 

\sum_{i=1}^{M} K(x, a_i) \cdot h_ihx=∑i=1MK(x,ai

)⋅hi. This formulation ensures that spatial points in close 

proximity result in similar hypervectors, thereby 

preserving spatial locality in the encoded representation. 

To conform to the binary or bipolar nature of 

hyperdimensional computing, the final hypervector 

hxh_xhx undergoes a transformation through either a 

sign function or stochastic binarization, converting it 

into a format of {−1,+1}D\{-1, +1\}^D{−1,+1}D, 

suitable for further HDC operations. 

Comparison Models 

To benchmark the performance of the Laplace kernel 

encoder, three alternative spatial encoding methods were 

implemented for comparison. The first method, 

orthogonal encoding, assigns a unique orthogonal 

hypervector to each spatial location, ensuring distinct 

representations for different positions. The second 

method, Gaussian kernel encoding, is similar to the 

Laplace approach but utilizes an L2-based Gaussian 

kernel to measure similarity between spatial points. The 

third method, position index encoding, maps each grid 

cell to a predefined position index in high-dimensional 

space, providing a straightforward encoding scheme 

based on fixed positions. These alternative methods 

serve as baselines for evaluating the effectiveness and 

advantages of the Laplace kernel encoder in terms of 

spatial locality preservation, similarity, and 

computational efficiency. 

Integration with Hyperdimensional Operations 

Spatial relations between entities, such as object-

location associations, are encoded through a binding 

process that uses element-wise multiplication, 

represented as Hbound=Hobject⊗HlocationH_{bound} 

= H_{object} \otimes H_{location}Hbound=Hobject

⊗Hlocation. This operation ensures that the spatial 

relation between objects and their corresponding 

locations is effectively captured. To aggregate multiple 

observations, the bundling process is applied, where 

vector summation of the bound hypervectors is followed 
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by normalization, resulting in 

Hscene=∑i=1NHbound(i)H_{scene} = \sum_{i=1}^N 

H_{bound}^{(i)}Hscene=∑i=1NHbound(i). This step 

combines the information from different observations to 

form a unified scene representation. Finally, directional 

information, which conveys sequential or spatially 

oriented data, is encoded using a permutation operation. 

This is achieved by cyclically shifting the base 

hypervector by ddd dimensions, expressed as 

Hdirectional=ρd(Hbase)H_{directional} = 

\rho^d(H_{base})Hdirectional=ρd(Hbase), where 

ρd\rho^dρd represents the cyclic shift of ddd 

dimensions. These operations together facilitate the 

encoding of complex spatial and directional 

relationships within high-dimensional spaces, 

supporting the model's ability to process and infer spatial 

contexts. 

Evaluation Metrics 

To evaluate the encoding quality and its applicability in 

AI tasks, several performance metrics were used. Cosine 

similarity was calculated between spatially adjacent and 

distant hypervectors to assess the accuracy of spatial 

relationships preserved during encoding. K-Nearest 

Neighbors (KNN) classification accuracy was employed 

to measure how well the encoded hypervectors could be 

used for location classification tasks. Robustness to 

noise was tested by introducing spatial jitter and 

examining the stability of the encoding under 

perturbations. Additionally, memory efficiency was 

measured in terms of bytes per location to assess the 

storage requirements of the encoding method. Finally, 

execution time for both encoding and retrieval tasks was 

recorded to evaluate the efficiency and practicality of the 

system in real-time applications. These metrics 

collectively provided a comprehensive assessment of the 

encoding scheme's performance in various AI tasks. 

Experimental Setup 

Hardware: NVIDIA RTX 3080 GPU, 64GB RAM. 

Software: Python 3.10, NumPy, Scikit-learn, PyTorch. 

Hyperparameters: 

o Dimensionality D=10,000D = 

10,000D=10,000 

o Kernel anchors M=100M = 100M=100 

o Laplace width σ=0.05\sigma = 

0.05σ=0.05 

Each experiment was repeated 10 times to ensure 

reproducibility, with confidence intervals reported 

where applicable.This methodological framework 

provides a comprehensive platform for evaluating 

spatial encoding strategies in HDC from an AI 

perspective, particularly those involving spatial 

cognition, robotic localization, and scene understanding. 

 

RESULTS 

This chapter presents the experimental outcomes 

evaluating the performance of the proposed Laplace 

Kernel-based spatial encoder in a Hyperdimensional 

Computing (HDC) framework. The encoder was 

benchmarked against standard spatial encoding 

techniques, including Orthogonal Encoding, Gaussian 

Kernel Encoding, and Position Index Encoding, across 

various AI-relevant tasks. 

The results are organized by evaluation dimensions: 

spatial similarity preservation, classification accuracy, 

robustness to noise, and computational/memory 

efficiency. 

Spatial Similarity Preservation 

To assess how well spatial proximity is preserved in the 

hyperdimensional space, we computed cosine similarity 

between encoded vectors of neighboring and distant 

points. 

Table 1. Cosine Similarity Between Nearby and 

Distant Spatial Points 

Encoding 

Method 

Avg. Similarity 

(Nearby Points) 

Avg. Similarity 

(Distant Points) 

Laplace 

Kernel (ours) 

0.88 0.12 

Gaussian 

Kernel 

0.81 0.20 

Orthogonal 

Encoding 

0.12 0.11 

Position 

Index 

0.35 0.17 

 
Interpretation: The Laplace Kernel encoder maintains 

high similarity for spatially close vectors and sharp 

decay for distant points, outperforming other encoders in 

spatial locality preservation. 

Location Classification Accuracy 

A k-nearest neighbor (KNN) classifier was trained to 

recognize spatial zones based on encoded vectors. Each 

dataset (grid, map, and scene layout) was split 70/30 for 

training/testing. 
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Table 2. KNN Classification Accuracy Across 

Datasets 

Encoding 

Method 

2D 

Grid 

(%) 

SLAM 

Map (%) 

Object 

Layout 

(%) 

Laplace 

Kernel (ours) 

96.7 93.4 89.2 

Gaussian 

Kernel 

91.3 88.1 84.6 

Orthogonal 

Encoding 

85.5 79.2 72.3 

Position Index 88.2 81.4 75.0 

 
Interpretation: The Laplace kernel consistently 

achieves the highest classification accuracy, 

demonstrating superior generalization in spatial 

inference tasks. 

Robustness to Spatial Noise 

We evaluated how encoding resilience degrades under 

spatial noise, simulating jitter by adding Gaussian noise 

(µ=0, σ=0.01) to coordinate inputs. 

Table 3. Encoding Similarity Under Noise (Cosine 

Similarity with Original) 

Encoding 

Method 

No 

Noise 

Low Noise 

(σ=0.01) 

High Noise 

(σ=0.05) 

Laplace 

Kernel (ours) 

1.00 0.91 0.73 

Gaussian 

Kernel 

1.00 0.85 0.62 

Orthogonal 

Encoding 

1.00 0.14 0.03 

Position Index 1.00 0.68 0.41 

Interpretation: The Laplace kernel demonstrates strong 

robustness under noise, retaining high similarity 

compared to other encoders. 

Computational and Memory Efficiency 

We measured encoding time and memory footprint for a 

batch of 10,000 spatial points. 

Table 4. Encoding Time and Memory Usage 

Encoding 

Method 

Avg. Time 

(ms) 

Memory/Point 

(Bytes) 

Laplace Kernel 

(ours) 

18.4 1,250 

Gaussian Kernel 21.1 1,250 

Orthogonal 

Encoding 

4.2 10,000 

Position Index 6.8 2,000 

Interpretation: While not the fastest, the Laplace 

Kernel achieves a good balance between memory 

efficiency and computational speed, especially 

compared to memory-heavy orthogonal encoding. 

Visual Representation of Embeddings 

A t-SNE projection was used to visualize the 

hypervectors in 2D space. Clusters formed using the 

Laplace kernel were more compact and spatially 

structured, indicating good preservation of geometry. 

 
 

Summary of Results 

Metric Best Performer 

Locality Preservation Laplace Kernel 

Classification Accuracy Laplace Kernel 

Noise Robustness Laplace Kernel 

Encoding Speed Orthogonal Encoding 

Memory Efficiency Laplace / Gaussian 

Overall, the Laplace kernel spatial encoder provides a 
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robust and high-performance solution for representing 

spatial data in hyperdimensional AI systems. It 

significantly outperforms traditional encoders in 

preserving spatial similarity and supporting downstream 

AI tasks such as location classification and object co-

location inference. 

DISCUSSION 

Spatial encoding lies at the heart of many artificial 

intelligence (AI) systems, particularly those that rely on 

sensory input, environmental mapping, and contextual 

reasoning—such as autonomous agents, robotics, and 

neuromorphic computing platforms. In 

Hyperdimensional Computing (HDC), where 

information is represented and manipulated as high-

dimensional binary or real-valued vectors, encoding 

schemes must preserve the essential topological and 

relational characteristics of input data. The key challenge 

has been to develop encodings that are robust, scalable, 

semantically meaningful, and efficient in both memory 

and computation. 

This study introduced a Laplace Kernel-based spatial 

encoder designed to address the spatial locality and 

smoothness limitations found in existing encoding 

methods. Our results show that the Laplace Kernel 

approach significantly outperforms traditional encoding 

techniques such as Gaussian kernel, orthogonal 

encoding, and position indexing across several 

dimensions critical to AI systems—most notably, spatial 

similarity preservation, classification accuracy, noise 

robustness, and memory efficiency. 

One of the most noteworthy findings is the strong 

performance of the Laplace kernel in preserving local 

spatial structure. Unlike orthogonal encoding, which 

treats each position as entirely independent (resulting in 

poor generalization), or positional indexing, which lacks 

smooth decay in similarity, the Laplace kernel benefits 

from an exponential decay function. This enables it to 

maintain high similarity among spatially proximate 

inputs and rapidly diminish the similarity as the distance 

increases, leading to improved spatial generalization. 

The classification accuracy obtained on three spatial 

datasets confirms the Laplace kernel's practical utility in 

downstream AI tasks such as semantic localization, 

map-based navigation, and object layout reasoning. The 

model achieved over 90% accuracy in grid and SLAM 

datasets, emphasizing that spatial structure is well 

encoded and recoverable even by simple classifiers like 

KNN. 

From a robustness standpoint, the Laplace kernel 

encoding exhibits impressive tolerance to spatial 

noise—an essential attribute for real-world AI agents 

operating in uncertain or sensor-noisy environments. 

This contrasts sharply with orthogonal and position-

based encodings, where minor perturbations in 

coordinates led to drastic representational divergence. 

Furthermore, while orthogonal encoding is faster in 

absolute terms, its large memory footprint (due to storing 

nearly independent vectors for each position) makes it 

impractical in AI applications requiring scalability—

such as mobile robotics, swarm intelligence, or 

embedded AI systems. The Laplace kernel strikes a 

favorable balance, maintaining compactness without 

compromising fidelity or speed significantly. 

In terms of high-level representation learning, the t-SNE 

visualizations (referenced in the results chapter) reveal 

that Laplace-encoded vectors preserve topological 

relationships better than the baselines. This suggests 

strong potential for this method in learning tasks where 

geometric or spatial structure is integral—such as in AI 

for autonomous driving (scene layout understanding), 

spatially-aware natural language processing (e.g., visual 

question answering), or 3D point cloud encoding. 

Overall, the discussion affirms the central hypothesis: 

using a Laplace kernel-based spatial encoder in HDC 

improves the stability, expressiveness, and usability of 

high-dimensional representations for spatial AI tasks. 

 

CONCLUSION 

This research presented a novel approach to spatial 

encoding within the domain of Hyperdimensional 

Computing by leveraging the Laplace kernel to encode 

spatial information more effectively. Through a series of 

controlled experiments, the proposed method was 

evaluated against three popular spatial encoders across 

tasks that simulate real-world AI environments—such as 

spatial classification, noise tolerance, and embedding 

efficiency. 

The Laplace Kernel encoder demonstrated: Superior 

locality preservation, ensuring that nearby spatial points 

are represented with similar high-dimensional vectors. 

Enhanced classification performance in recognizing 

spatial regions from encoded data. Strong robustness to 

input noise, a critical feature for real-world, noisy AI 

systems. Reasonable computational and memory 

efficiency, making it suitable for scalable AI 

deployment. 

From an AI perspective, this work contributes a vital 

building block to the growing field of biologically-

inspired and brain-like computing architectures. As AI 

systems evolve to become more spatially aware and 

context-driven—whether in robotics, virtual 

environments, or sensor networks—the need for robust, 

interpretable, and efficient encodings will only increase. 

The Laplace kernel-based encoder addresses this need 

and offers a pathway for further enhancements in 

hierarchical spatial representation and multi-modal 

integration in AI. 

Future Directions 

Temporal-Spatial Extensions: Combining Laplace-

based spatial encoding with temporal dynamics may 

benefit predictive models in AI navigation and planning. 

Integration with Neuromorphic Hardware: Exploring 
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how the kernel approach translates to spiking neural 

network platforms or other energy-efficient 

architectures. Multimodal Fusion: Applying the encoder 

in tasks involving spatial and visual/language co-

representation (e.g., in AR/VR, robotics). 

In summary, this work not only introduces an effective 

encoding mechanism but also lays the groundwork for 

developing future AI systems that are more robust, 

spatially intelligent, and grounded in bio-inspired high-

dimensional frameworks. 
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