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Spatial Encoding Challenges in Hyperdimensional Computing: A Laplace

Kernel Approach
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ABSTRACT

Hyperdimensional Computing (HDC) offers a powerful brain-inspired paradigm for data representation, leveraging
high-dimensional vectors to encode and manipulate information. However, effective spatial encoding remains a
significant challenge, especially for Al applications that require spatial awareness, such as robotics, navigation, and
contextual reasoning. Traditional spatial encoding techniques—such as orthogonal indexing or Gaussian-based
kernels—struggle with preserving locality, generalizing across spatial proximity, or scaling efficiently. This study
introduces a novel Laplace kernel-based approach to spatial encoding within the HDC framework, designed to
address these critical limitations.The proposed method uses the Laplace function to generate similarity-decaying
high-dimensional vectors based on spatial distance, ensuring that representations of nearby positions remain
correlated while those of distant points diverge exponentially. Extensive experiments were conducted on spatial
classification tasks, noise-resilience tests, and dimensional efficiency benchmarks using synthetic and real-world
datasets. Results demonstrate that the Laplace kernel-based encoder consistently outperforms baseline methods in
classification accuracy (achieving up to 94%), noise robustness (with minimal degradation under coordinate
perturbations), and topological preservation, as shown in t-SNE visualizations.From an Al perspective, this
encoding scheme supports the development of more robust, scalable, and interpretable spatial representations,
particularly for applications in autonomous systems, embodied agents, and neuromorphic computing. The findings
indicate that Laplace-based spatial encoding can serve as a critical enabler for the next generation of spatially
intelligent Al systems operating in uncertain or dynamic environments.
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INTRODUCTION

In the era of Artificial Intelligence (Al) and machine
learning, the need for efficient, robust, and scalable
computational models has never been greater (Mansouri
et al., 2024; Sarker, 2022). Traditional computational
architectures, while powerful, are increasingly facing
bottlenecks in memory bandwidth, energy consumption,
and parallel scalability when applied to Al tasks that
involve vast, high-dimensional data such as images,
videos, and sensor signals (Khonina et al., 2024).
Hyperdimensional Computing (HDC), inspired by
properties  of  high-dimensional  spaces and
neurobiological models of cognition, offers a promising
paradigm to address these limitations. HDC operates on
the principle that information can be encoded,
manipulated, and retrieved in the form of high-
dimensional vectors, known as hypervectors, providing
a foundation for fast, noise-tolerant, and highly
parallelizable computation suitable for Al systems.

However, one of the critical challenges in HDC,
especially when dealing with spatial data such as visual
scenes, spatial sensor layouts, or robotic environment
mapping, lies in the spatial encoding process (Asrat &
Cho, 2024; Hassan et al., 2024). Spatial encoding is the

task of representing spatial relationships and geometric
structures within a high-dimensional format while
preserving locality, similarity, and meaningful
correlations (Lee, 2023; Zhao et al., 2023). Existing
spatial encoding schemes in HDC often struggle with
maintaining fine-grained spatial relationships or require
massive redundancy to achieve acceptable performance.
This shortcoming hinders the effectiveness of HDC in
Al applications such as computer vision, autonomous
navigation, urban planning simulations, and spatial
reasoning tasks where precision and context are essential
(He & Chen, 2024; Lifelo et al., 2024).

To address these challenges, this study proposes a novel
approach: leveraging Laplace Kernel Functions for
spatial encoding  within the framework of
Hyperdimensional Computing (Zakeri et al., 2024;
Heddes et al., 2024). Laplace kernels, known for their
locality-preserving and smooth similarity decay
properties, provide an elegant mathematical tool for
capturing proximity-based relationships. By embedding
spatial points into hypervectors through Laplace-driven
transformations, we aim to achieve a more accurate,
compact, and flexible representation of spatial data in
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HDC systems, thus improving the performance of Al
applications that rely heavily on spatial understanding.
The Laplace kernel approach fundamentally shifts how
spatial relationships are modeled in HDC. Traditional
encoding methods often rely on either hard-coded spatial
address (which are brittle) or simple Gaussian-based
similarities (which can be too diffuse in high
dimensions). Laplace kernels, characterized by their
exponentially decaying similarity with distance, offer a
middle ground: maintaining local coherence while
allowing for meaningful global structures (Woodman &
Mangoni, 2023; Hoekzema et al., 2022). This balance is
especially beneficial in Al contexts where both local
features (e.g., object boundaries) and global
relationships (e.g., map layouts) must be captured
simultaneously (Ko et al., 2023; Zhang et al., 2022).
Furthermore, the introduction of a Laplace Kernel-based
spatial encoder is highly synergistic with current trends
in Al towards edge computing and neuromorphic
architectures (Choi et al., 2024). Edge Al devices—
ranging from drones and autonomous vehicles to mobile
health sensors—require extremely efficient computation
with minimal resources (Biswas & Wang, 2023; Singh
& Gill, 2023). Hyperdimensional representations
enhanced by Laplace kernels could offer substantial
gains in robustness, compression, and interpretability,
reducing the dependency on cloud-based processing.
Similarly, neuromorphic chips, which emulate the
human brain's structure and function, naturally align
with hyperdimensional operations; thus, integrating
Laplace-based encoding could enable smarter, more
adaptable, and energy-efficient Al systems.

Another important aspect to consider is co-learning
between humans and Al systems in spatially intensive
environments (Schoonderwoerd et al., 2022; Lu et al.,
2024). For example, in human-robot collaboration
settings like Urban Search and Rescue (USAR)
missions, the spatial understanding of environments is
critical (Simon et al., 2023; Chitikena et al., 2023). An
HDC system equipped with Laplace kernel spatial
encodings could allow Al agents to dynamically share,
adapt, and reason about spatial knowledge with human
teammates more efficiently. This would lead to Al
systems that are not only better at navigation and
mapping but also better at explaining and interpreting
spatial decisions—a crucial feature for trustworthy Al
(Goel et al., 2023).

From a theoretical standpoint, the study also contributes
to the ongoing exploration of kernel methods in high-
dimensional machine learning. While kernel methods
are well-established in classical Al tasks (e.g., support
vector machines), their integration into HDC remains
relatively underexplored. Bridging these fields through
the Laplace kernel could pave the way for a new class of
kernelized hyperdimensional models that inherit the best
of both worlds: the representational power of kernel

spaces and the noise-tolerance and efficiency of HDC.
In this research, we systematically evaluate the
performance of Laplace Kernel-based spatial encodings
against traditional encoding schemes. We measure key
Al-relevant metrics such as retrieval accuracy,
robustness to noise and occlusion, memory footprint,
and computational efficiency. Our methodology
involves constructing synthetic spatial datasets, such as
2D grids and 3D environment maps, and real-world
datasets from robotics and vision domains. Using
standard HDC operations—binding, bundling, and
permutation—we implement and benchmark the
proposed encoding model.

In conclusion, by introducing a Laplace kernel-based
approach to spatial encoding in Hyperdimensional
Computing, this study seeks to overcome fundamental
challenges in Al-driven spatial reasoning. This
innovation promises not only to enhance the
computational toolkit for Al researchers and engineers
but also to push the boundaries of what can be achieved
with HDC in real-world, resource-constrained, and
dynamic environments. As Al continues to permeate
every aspect of modern life, from self-driving cars to
augmented reality and smart cities, such advancements
in computational frameworks will be critical in building
the next generation of intelligent, adaptive, and human-
centric systems.

This study presents a novel spatial encoding framework
in Hyperdimensional Computing (HDC) using the
Laplace kernel function, aiming to address key
challenges in spatial representation for Al tasks. The
methodology is structured to evaluate the effectiveness,
robustness, and efficiency of this approach compared to
existing spatial encoders. The steps involved span from
dataset preparation and encoding model design to
experimental evaluation across multiple Al-relevant
benchmarks.

Research Design and Obijectives

The core objective of this study is to develop and
validate a Laplace Kernel-based spatial encoder within
the Hyperdimensional Computing (HDC) paradigm. To
achieve this, a specialized Laplace kernel function was
designed to encode spatial positions into high-
dimensional vectors (hypervectors), ensuring that spatial
proximity is effectively preserved in the encoding
process. This novel encoding mechanism was then
integrated into a standard HDC framework to assess its
practical applicability. To benchmark its effectiveness,
the Laplace-based encoder was compared with several
baseline spatial encoding methods, including Gaussian
kernel encoding, orthogonal address-based encoding,
and grid encoding. The evaluation focused on key
performance metrics such as classification accuracy,
preservation of spatial similarity, robustness to spatial
noise, memory efficiency, and generalization across
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unseen spatial inputs.
System Architecture Overview
The proposed system architecture comprises four main
modules designed to facilitate efficient spatial encoding
within the Hyperdimensional Computing (HDC)
framework. First, the Input Spatial Dataset module
handles 2D and 3D spatial datasets representing points,
regions, and object layouts, serving as the foundation for
subsequent processing. Second, the Laplace Kernel
Encoder transforms spatial coordinates into high-
dimensional  hypervectors using  Laplace-based
similarity functions, preserving spatial proximity
relationships. Third, the HDC Processing Core executes
key HDC operations such as binding, bundling, and
permutation to simulate learning and inference
mechanisms over encoded spatial data. Finally, the
Evaluation Engine calculates similarity scores, retrieval
accuracy, and spatial relation assessments to rigorously
measure the model's performance. All modules were
implemented in Python and optimized to run on GPUs,
ensuring the efficient handling of large-scale vector
operations required for real-time or high-throughput
applications.
Spatial Datasets and Use Cases
To ensure the generalizability of the findings, three
different spatial data scenarios were selected for
experimentation. First, a synthetic spatial grid was
created, consisting of a uniform 2D grid with labeled
spatial coordinates, which served to test spatial locality
preservation and encoding consistency. Second, robotic
navigation maps were extracted from SLAM
(Simultaneous Localization and Mapping) datasets
commonly used in mobile robotics; these maps
contained information about obstacles, free spaces, and
waypoints, making them ideal for evaluating pathfinding
and planning tasks. Third, object arrangement layouts
were sourced from indoor visual scene datasets such as
SUN-RGBD and AI2-THOR, capturing the relative
spatial positions of furniture and objects to support
object localization and co-location learning tasks. All
datasets underwent normalization of their spatial
coordinates to a [0, 1] range before being processed
through the encoding framework, ensuring consistency
across diverse input scenarios.
Laplace Kernel Encoding Design
The Laplace kernel encoder transforms a spatial
coordinate xeRnx \in \mathbb{R}"*nx€Rn into a high-
dimensional vector heRDh \in \mathbb{R}*DheRD,
using a similarity function defined as:
K(x,y)=expi/oi(—lix—yll1o) K (X, y) = \exp\left (-\frac {\|x
- Y\[_1} {\sigma} \right) K(x,y)=exp(—ocllx—yll1)
Where:

o Ix—yll1\x - Y\_1lIx—yll1 is the L1 (Manhattan)

distance between two spatial points,

e ol\sigmao is the kernel width hyperparameter
controlling similarity decay.

In the proposed spatial encoding approach, a set of
MMM anchor vectors A={al,a2,....aM}A =\{a_1,a 2,
.., a_M\}A={al,a2,....aM} is randomly initialized and
uniformly distributed over the spatial domain. Each
anchor is associated with a unique high-dimensional
random base vector H={h1,h2,...hM}H =\{h_1,h_2, ...,
h_M\}H={h1,h2,...,hM}. For any given spatial point
xxX, the corresponding high-dimensional representation
hxh_xhx is computed as a weighted sum of these base
vectors, where the weights are derived from the Laplace
kernel similarity K(x,ai)K(x, a_i)K(x,ai) between the
point xxx and each anchor aia_iai. Mathematically, this
is expressed as hx=)i=IMK(x,ai)-hih_x =
\sum_{i=1}{M} K(x, a_i) \cdot h_ihx=Yi=1MK(x,ai
)-hi. This formulation ensures that spatial points in close
proximity result in similar hypervectors, thereby
preserving spatial locality in the encoded representation.
To conform to the binary or bipolar nature of
hyperdimensional computing, the final hypervector
hxh_xhx undergoes a transformation through either a
sign function or stochastic binarization, converting it
into a format of {-1,+1}D\{-1, +1\}"D{-1,+1}D,
suitable for further HDC operations.

Comparison Models

To benchmark the performance of the Laplace kernel
encoder, three alternative spatial encoding methods were
implemented for comparison. The first method,
orthogonal encoding, assigns a unique orthogonal
hypervector to each spatial location, ensuring distinct
representations for different positions. The second
method, Gaussian kernel encoding, is similar to the
Laplace approach but utilizes an L2-based Gaussian
kernel to measure similarity between spatial points. The
third method, position index encoding, maps each grid
cell to a predefined position index in high-dimensional
space, providing a straightforward encoding scheme
based on fixed positions. These alternative methods
serve as baselines for evaluating the effectiveness and
advantages of the Laplace kernel encoder in terms of
spatial ~ locality  preservation,  similarity, and
computational efficiency.

Integration with Hyperdimensional Operations
Spatial relations between entities, such as object-
location associations, are encoded through a binding
process that wuses element-wise multiplication,
represented as Hbound=Hobject®HIocationH_{bound}
= H_{object} \otimes H_{location}Hbound=Hobject
®Hlocation. This operation ensures that the spatial
relation between objects and their corresponding
locations is effectively captured. To aggregate multiple
observations, the bundling process is applied, where
vector summation of the bound hypervectors is followed



Original Article

by normalization, resulting in
Hscene=) i=INHbound(i)H_{scene} = \sum_{i=1}"N
H_{bound}*{(i)}Hscene=>i=1NHbound(i). This step
combines the information from different observations to
form a unified scene representation. Finally, directional
information, which conveys sequential or spatially
oriented data, is encoded using a permutation operation.
This is achieved by cyclically shifting the base
hypervector by ddd dimensions, expressed as
Hdirectional=pd(Hbase)H_{directional} =
\rhod(H_{base})Hdirectional=pd(Hbase), where
pd\rho"dpd represents the cyclic shift of ddd
dimensions. These operations together facilitate the
encoding of complex spatial and directional
relationships ~ within  high-dimensional  spaces,
supporting the model's ability to process and infer spatial
contexts.
Evaluation Metrics
To evaluate the encoding quality and its applicability in
Al tasks, several performance metrics were used. Cosine
similarity was calculated between spatially adjacent and
distant hypervectors to assess the accuracy of spatial
relationships preserved during encoding. K-Nearest
Neighbors (KNN) classification accuracy was employed
to measure how well the encoded hypervectors could be
used for location classification tasks. Robustness to
noise was tested by introducing spatial jitter and
examining the stability of the encoding under
perturbations. Additionally, memory efficiency was
measured in terms of bytes per location to assess the
storage requirements of the encoding method. Finally,
execution time for both encoding and retrieval tasks was
recorded to evaluate the efficiency and practicality of the
system in real-time applications. These metrics
collectively provided a comprehensive assessment of the
encoding scheme's performance in various Al tasks.
Experimental Setup
Hardware: NVIDIA RTX 3080 GPU, 64GB RAM.
Software: Python 3.10, NumPy, Scikit-learn, PyTorch.
Hyperparameters:

o Dimensionality

10,000D=10,000

D=10,000D =

o Kernel anchors M=100M = 100M=100

o Laplace  width

0.056=0.05

0=0.05\sigma =

Each experiment was repeated 10 times to ensure
reproducibility, with confidence intervals reported
where applicable.This methodological framework
provides a comprehensive platform for evaluating
spatial encoding strategies in HDC from an Al
perspective, particularly those involving spatial
cognition, robotic localization, and scene understanding.

This chapter presents the experimental outcomes
evaluating the performance of the proposed Laplace
Kernel-based spatial encoder in a Hyperdimensional
Computing (HDC) framework. The encoder was
benchmarked against standard spatial encoding
techniques, including Orthogonal Encoding, Gaussian
Kernel Encoding, and Position Index Encoding, across
various Al-relevant tasks.

The results are organized by evaluation dimensions:
spatial similarity preservation, classification accuracy,
robustness to noise, and computational/memory
efficiency.

Spatial Similarity Preservation

To assess how well spatial proximity is preserved in the
hyperdimensional space, we computed cosine similarity
between encoded vectors of neighboring and distant
points.

Table 1. Cosine Similarity Between Nearby and
Distant Spatial Points

Encoding Avg. Similarity | Avg. Similarity
Method (Nearby Points) | (Distant Points)
Laplace 0.88 0.12

Kernel (ours)

Gaussian 0.81 0.20

Kernel

Orthogonal 0.12 0.11

Encoding

Position 0.35 0.17

Index

Avg. Similarity (Distant Points)

0.25
0.2 |
0.15
0.1
0.05

0
0 0.2 0.4 0.6 0.8 1

Interpretation: The Laplace Kernel encoder maintains
high similarity for spatially close vectors and sharp
decay for distant points, outperforming other encoders in
spatial locality preservation.

Location Classification Accuracy

A k-nearest neighbor (KNN) classifier was trained to
recognize spatial zones based on encoded vectors. Each
dataset (grid, map, and scene layout) was split 70/30 for
training/testing.



Table 2. KNN Classification Accuracy AcCross Table 4. Encoding Time and Memory Usage

Datasets Encoding Avg. Time | Memory/Point
Encoding 2D SLAM Object Method (ms) (Bytes)
Method Grid Map (%) | Layout
(%) (%) Laplace Kernel | 18.4 1,250
(ours)
Laplace 96.7 934 89.2 i
Kernel (ours) Gaussian Kernel | 21.1 1,250
Gaussian 013 |88l 84.6 Orthogonal 4.2 10,000
Kernel Encoding
Orthogonal 85.5 79.2 72.3 Position Index | 6.8 2,000
Encoding Interpretation: While not the fastest, the Laplace
Position Index | 88.2 814 750 Ke!rn_el achieves a good palance between memory
efficiency and computational speed, especially
compared to memory-heavy orthogonal encoding.
SLAM Map (%) Visual Representation of Embeddings
A t-SNE projection was used to visualize the
100 hypervectors in 2D space. Clusters formed using the
9 ) Laplace kernel were more compact and spatially
:‘; c o structured, indicating good preservation of geometry.
30 _'_ —) Visual Representation of Embeddings
75
80 85 90 95 100
20 A
Interpretation: The Laplace kernel consistently ®
achieves the highest classification  accuracy, o 8830
demonstrating superior generalization in spatial = ¢ “‘;' po

inference tasks. -
Robustness to Spatial Noise

£31(0 2

Kernel (ours)

Gaussian 1.00 0.85 0.62
Kernel

Orthogonal 1.00 0.14 0.03
Encoding

Position Index | 1.00 0.68 0.41

Interpretation: The Laplace kernel demonstrates strong
robustness under noise, retaining high similarity
compared to other encoders.

Computational and Memory Efficiency

We measured encoding time and memory footprint for a
batch of 10,000 spatial points.

We evaluated how encoding resilience degrades under °s 30 .
spatial noise, simulating jitter by adding Gaussian noise P 0:‘33’_:%‘.. .
(n=0, 6=0.01) to coordinate inputs. ~101 e A 0'}:33{;}:,'-'.
Table 3. Encoding Similarity Under Noise (Cosine o Vo o0 '-?‘ﬁ%’:‘sy'-.o
Similarity with Original) 0. STeAe R AR
Encoding No Low Noise | High Noise .
Method Noise | (6=0.01) (6=0.05) 0.
Laplace 1.00 0.91 0.73 . e . 20 o oo

TSNE L

Summary of Results
Metric

Best Performer

Locality Preservation Laplace Kernel

Classification Accuracy | Laplace Kernel

Noise Robustness Laplace Kernel

Encoding Speed Orthogonal Encoding

Memory Efficiency Laplace / Gaussian

Overall, the Laplace kernel spatial encoder provides a
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robust and high-performance solution for representing
spatial data in hyperdimensional Al systems. It
significantly outperforms traditional encoders in
preserving spatial similarity and supporting downstream
Al tasks such as location classification and object co-
location inference.

Spatial encoding lies at the heart of many artificial
intelligence (Al) systems, particularly those that rely on
sensory input, environmental mapping, and contextual
reasoning—such as autonomous agents, robotics, and
neuromorphic computing platforms. In
Hyperdimensional ~ Computing  (HDC),  where
information is represented and manipulated as high-
dimensional binary or real-valued vectors, encoding
schemes must preserve the essential topological and
relational characteristics of input data. The key challenge
has been to develop encodings that are robust, scalable,
semantically meaningful, and efficient in both memory
and computation.

This study introduced a Laplace Kernel-based spatial
encoder designed to address the spatial locality and
smoothness limitations found in existing encoding
methods. Our results show that the Laplace Kernel
approach significantly outperforms traditional encoding
techniques such as Gaussian kernel, orthogonal
encoding, and position indexing across several
dimensions critical to Al systems—maost notably, spatial
similarity preservation, classification accuracy, noise
robustness, and memory efficiency.

One of the most noteworthy findings is the strong
performance of the Laplace kernel in preserving local
spatial structure. Unlike orthogonal encoding, which
treats each position as entirely independent (resulting in
poor generalization), or positional indexing, which lacks
smooth decay in similarity, the Laplace kernel benefits
from an exponential decay function. This enables it to
maintain high similarity among spatially proximate
inputs and rapidly diminish the similarity as the distance
increases, leading to improved spatial generalization.
The classification accuracy obtained on three spatial
datasets confirms the Laplace kernel's practical utility in
downstream Al tasks such as semantic localization,
map-based navigation, and object layout reasoning. The
model achieved over 90% accuracy in grid and SLAM
datasets, emphasizing that spatial structure is well
encoded and recoverable even by simple classifiers like
KNN.

From a robustness standpoint, the Laplace kernel
encoding exhibits impressive tolerance to spatial
noise—an essential attribute for real-world Al agents
operating in uncertain or sensor-noisy environments.
This contrasts sharply with orthogonal and position-
based encodings, where minor perturbations in
coordinates led to drastic representational divergence.
Furthermore, while orthogonal encoding is faster in

absolute terms, its large memory footprint (due to storing
nearly independent vectors for each position) makes it
impractical in Al applications requiring scalability—
such as mobile robotics, swarm intelligence, or
embedded Al systems. The Laplace kernel strikes a
favorable balance, maintaining compactness without
compromising fidelity or speed significantly.

In terms of high-level representation learning, the t-SNE
visualizations (referenced in the results chapter) reveal
that Laplace-encoded vectors preserve topological
relationships better than the baselines. This suggests
strong potential for this method in learning tasks where
geometric or spatial structure is integral—such as in Al
for autonomous driving (scene layout understanding),
spatially-aware natural language processing (e.g., visual
guestion answering), or 3D point cloud encoding.
Overall, the discussion affirms the central hypothesis:
using a Laplace kernel-based spatial encoder in HDC
improves the stability, expressiveness, and usability of
high-dimensional representations for spatial Al tasks.

This research presented a novel approach to spatial
encoding within the domain of Hyperdimensional
Computing by leveraging the Laplace kernel to encode
spatial information more effectively. Through a series of
controlled experiments, the proposed method was
evaluated against three popular spatial encoders across
tasks that simulate real-world Al environments—such as
spatial classification, noise tolerance, and embedding
efficiency.

The Laplace Kernel encoder demonstrated: Superior
locality preservation, ensuring that nearby spatial points
are represented with similar high-dimensional vectors.
Enhanced classification performance in recognizing
spatial regions from encoded data. Strong robustness to
input noise, a critical feature for real-world, noisy Al

systems. Reasonable computational and memory
efficiency, making it suitable for scalable Al
deployment.

From an Al perspective, this work contributes a vital
building block to the growing field of biologically-
inspired and brain-like computing architectures. As Al
systems evolve to become more spatially aware and
context-driven—whether in robotics, virtual
environments, or sensor networks—the need for robust,
interpretable, and efficient encodings will only increase.
The Laplace kernel-based encoder addresses this need
and offers a pathway for further enhancements in
hierarchical spatial representation and multi-modal
integration in Al.

Future Directions

Temporal-Spatial Extensions: Combining Laplace-
based spatial encoding with temporal dynamics may
benefit predictive models in Al navigation and planning.
Integration with Neuromorphic Hardware: Exploring
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how the kernel approach translates to spiking neural

network

platforms or  other  energy-efficient

architectures. Multimodal Fusion: Applying the encoder
in tasks involving spatial and visual/language co-
representation (e.g., in AR/VR, robotics).

In summary, this work not only introduces an effective
encoding mechanism but also lays the groundwork for
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