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Reasoning about Strategic Behavior: Imperfect Information and Perfect

Recall in Decidability Analysis
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ABSTRACT

Strategic decision-making in games with imperfect information and perfect recall has been a significant area of study in artificial intelligence
(Al) and game theory. This paper presents a comprehensive analysis of reasoning about strategic behavior in such games, focusing on the
computational complexity and feasibility of various decision-making algorithms. The study evaluates several key algorithms, including
Iterative Regret Minimization, Deep Q-Networks (DQN), and Nash Equilibrium Approximation, in terms of their ability to compute optimal
strategies and solve strategic problems efficiently. Through theoretical analysis and empirical evaluations, we demonstrate the computational
challenges associated with strategic tasks like optimal strategy computation and equilibrium identification. While certain algorithms offer
efficient solutions for real-time decision-making, others, particularly those relying on deep reinforcement learning, require significant
computational resources. The results provide valuable insights into the trade-offs between efficiency, accuracy, and computational resources
in strategic decision-making. Our findings suggest that the choice of algorithm should be based on the specific characteristics of the strategic
problem, such as problem size, real-time requirements, and resource constraints. The study contributes to a deeper understanding of the
computational aspects of reasoning about strategic behavior in imperfect information games with perfect recall and provides practical
recommendations for algorithm selection in real-world applications.
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INTRODUCTION

In the realm of artificial intelligence (Al), strategic
reasoning forms a core component of decision-making
models, especially in settings where multiple agents
interact under varying degrees of uncertainty (Alijoyo et
al., 2024; Gupta et al., 2022). This type of reasoning is
critical in domains such as game theory, automated
negotiations, autonomous systems, and multi-agent
systems (Duan et al., 2023; Luzolo et al., 2024). A key
aspect of such reasoning involves understanding how
agents make decisions based on available information,
particularly when dealing with imperfect information
and the requirement of perfect recall. These factors are
essential for constructing realistic models of strategic
behavior in competitive and cooperative settings.

At its core, strategic behavior involves the decision-
making process where each agent's actions are
influenced not only by their own preferences and goals
but also by their anticipation of the actions and reactions
of others (Sarmiento et al., 2024). This becomes
significantly more complex when agents operate under
imperfect information—where they do not have
complete knowledge of the environment or the strategies
of other agents—and perfect recall—the ability to
remember all past actions and information encountered
during the decision-making process.

In real-world applications, strategic behavior often
occurs in environments characterized by imperfect
information and perfect recall (Mehta et al., 2022). For
example, in poker, players may not know their
opponents' cards (imperfect information), but they can

remember all previous moves made in the game (perfect
recall). Similarly, in negotiations, one party may not
have full information about the other party's preferences
or constraints but will rely on past interactions to guide
future decisions. The interaction between imperfect
information and perfect recall presents a unique
challenge for Al systems seeking to reason about
strategic behavior (Johnson et al., 2022; Alijoyo et al.,
2024).

A key challenge in Al and decision theory is the
decidability analysis of strategic behavior models.
Decidability refers to whether there is an algorithmic
method that can determine the outcome of a decision
process (such as identifying the best strategy in a game
or negotiation) in finite time (Stenseke, 2024). In games
or environments with imperfect information, deciding
optimal strategies often becomes a computationally hard
problem, as the decision process must account for all
possible contingencies and the behavior of other agents
(Talebiyan & Duenas-Osorio, 2024; Pycia & Troyan,
2023). When combined with the requirement of perfect
recall, where past actions influence future decisions, the
complexity of the problem increases even further
(Swiechowski et al., 2023).

In this context, reasoning about strategic behavior
involves understanding how agents can compute their
optimal strategies, even when faced with incomplete or
uncertain information about the environment and the
other agents (Li et al., 2022). Al systems need to analyze
how agents can use imperfect information to make the
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best possible decisions, while leveraging their ability to
recall past actions to refine their strategies (Enholm et
al., 2022). The analysis of such scenarios requires
advanced tools from computational complexity theory,
game theory, and logic, as it directly pertains to the
decidability of strategic problems (Bekius & Gomes,
2023; Gutierrez et al., 2023).

To analyze strategic behavior under these conditions, Al
researchers often model environments as games of
imperfect information (also known as games of
incomplete information), where agents cannot observe
all aspects of the environment, including the actions or
private information of other players (Ouyang & Zhou,
2023; Lu & Li, 2022). This is contrasted with games of
perfect information, such as chess, where all agents have
access to the same complete set of information. In games
of imperfect information, reasoning about the best
strategy becomes more intricate, as agents must make
decisions based on partial observations and probabilistic
beliefs about the hidden elements (Kovaiik et al., 2022;
Wong et al., 2023).

Moreover, perfect recall plays a crucial role in the
decision-making process (Morelli et al., 2022). Perfect
recall refers to the agent’s ability to remember
everything it has observed or experienced during the
course of the game or interaction (Battigalli & Generoso,
2024). This assumption is vital in reasoning about
strategic behavior, as an agent’s past actions and
observations can help it predict future outcomes and
form beliefs about the state of the game (Harré, 2022).
Perfect recall is essential for maintaining a consistent
strategy over time and is often assumed in game-
theoretic models to simplify the decision-making
process (Huang & Zhu, 2022; Kosteli¢, 2024). However,
even with perfect recall, the challenge of dealing with
imperfect information remains a significant obstacle.

In the context of decidability analysis, determining
whether an agent can compute an optimal strategy in a
game with imperfect information and perfect recall is a
problem that has been extensively studied (Gurov et al.,
2022). This analysis involves understanding the
computational limits of Al systems when tasked with
reasoning about strategic behavior (Yazdanpanah et al.,
2023). Specifically, it is concerned with identifying
whether it is possible to algorithmically determine the
outcome of a game or interaction, given the presence of
uncertainty and the reliance on past actions (Nordstrom,
2022; Cémara et al., 2022).

From an Al perspective, one of the major contributions
of this analysis is its ability to identify which types of
strategic problems are solvable or decidable and which
are not (Pietronudo et al., 2022). For example, in games
of imperfect information, Nash equilibria (a solution
concept in game theory where no player can improve
their strategy given the strategies of others) are often the
focus. Finding these equilibria in games with imperfect

information is generally computationally difficult, and
Al researchers must explore methods for approximating
solutions or providing guarantees on the solvability of
specific game classes.

The study of strategic behavior in the presence of
imperfect information and perfect recall has important
implications for various Al applications. These include
multi-agent systems (where multiple agents must
collaborate or compete under uncertainty), automated
reasoning systems (that rely on the ability to make
decisions based on past experiences), robotic decision-
making (where robots interact with humans or other
robots in unpredictable environments), and autonomous
vehicles (that must navigate complex environments with
incomplete information). In all these scenarios,
reasoning about strategic behavior under imperfect
information and perfect recall is crucial for the
development of intelligent systems that can effectively
navigate complex, dynamic environments.

In conclusion, reasoning about strategic behavior in
environments with imperfect information and perfect
recall is a fundamental problem in Al and decision
theory. The challenge lies in the decidability analysis of
such models, where determining the computational
feasibility of finding optimal strategies is a key concern.
As Al systems continue to evolve and interact in
increasingly complex and uncertain environments,
understanding the interaction between imperfect
information, perfect recall, and strategic reasoning will
play a pivotal role in advancing the capabilities of
intelligent systems. This research opens up new avenues
for the development of decision-making algorithms that
can handle uncertainty, memory, and the strategic
complexities inherent in real-world interactions.

To address the problem of reasoning about strategic
behavior in settings characterized by imperfect
information and perfect recall, we employ a combination
of formal methods from game theory, computational
complexity theory, and logical reasoning. These
approaches allow us to model the decision-making
processes of agents in environments where they lack
complete information about the state of the system or the
other agents but are able to remember past observations
and actions. Our methodology focuses on building
formal models, analyzing the computational complexity
of strategic decision-making, and evaluating the
decidability of optimal strategies in such settings.
Modeling  Strategic Behavior in  Imperfect
Information Games

The first step in our methodology is to formalize the
setting of strategic behavior, specifically within the
framework of imperfect information games. In these
games, agents interact with one another without full
knowledge of the system or the strategies of the other
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agents. To model this, we utilize partially observable
Markov decision processes (POMDPs), which allow us
to represent environments where each agent has limited
information about the world and the actions of other
agents. A POMDP is a probabilistic model where each
state of the system is not fully observable, but agents can
take actions and update their beliefs about the system
based on the partial observations.

Additionally, we extend these models by assuming that
agents have perfect recall, meaning that they retain all
past observations and actions in their memory, which
they can use to inform future decision-making. This
extension is crucial for our analysis, as perfect recall
enables agents to reason about their past behavior and
make decisions based on historical context. The
formalization of imperfect information and perfect recall
is achieved through an information set structure, where
agents have access to an information set that includes all
previous states and actions.

Decidability Analysis of Strategic Behavior

The central objective of this methodology is to analyze
the decidability of optimal strategy computation for
agents in imperfect information games with perfect
recall. Decidability refers to the ability to
algorithmically determine the outcome of a game or the
optimal strategies of the agents involved, within finite
time. To perform this analysis, we investigate several
decision problems that are central to strategic reasoning,
including:

Existence of Nash Equilibria: A Nash equilibrium is a
set of strategies in which no player can improve their
utility by unilaterally changing their strategy. We
analyze whether it is decidable to compute Nash
equilibria in imperfect information games with perfect
recall.

Optimal Strategy Computation: In some settings, we
are interested in finding the optimal strategy for an agent,
given its partial information and perfect recall. The
guestion is whether it is algorithmically feasible to
compute this strategy in polynomial time or if it is
inherently computationally difficult.

Game Solvability: We explore whether there is a
general method to determine whether a given strategic
environment (game) is solvable, meaning that the
existence of an optimal strategy for each agent can be
determined in finite time. This involves examining the
computational complexity of decision-making in such
environments.

To tackle these problems, we rely on tools from
computational complexity theory, particularly PSPACE
and EXPTIME complexity classes. These classes
describe the computational resources required to solve a
problem, specifically the amount of memory or time
needed to compute an optimal strategy. We analyze the
decidability of strategic problems by establishing their
membership in these complexity classes, determining

whether the problem is solvable in polynomial space,
exponential time, or under more restrictive conditions.
Formal Verification and Algorithmic Design

Once the theoretical foundations are established, we turn
to formal verification and algorithmic design to
implement and test the models and findings. Formal
verification involves checking the correctness of
strategic models and ensuring that they meet the desired
properties, such as optimality, consistency, and
rationality of the agents' strategies. This is achieved
through model checking and proof systems that validate
the outcomes of strategic decisions under the assumption
of imperfect information and perfect recall.

We also explore the design of approximation algorithms
for computing Nash equilibria and optimal strategies in
environments where exact solutions are computationally
intractable. These algorithms aim to provide near-
optimal solutions within a reasonable amount of time,
which is particularly useful in large-scale or real-time
decision-making applications. For example, we employ
iterative methods, such as regret minimization and
belief-based reasoning, to approximate Nash equilibria
and optimal strategies in large imperfect information
games.

Empirical Evaluation and Experimentation

In addition to the theoretical analysis and algorithmic
design, we conduct empirical evaluations to assess the
practical feasibility of our approach. This involves
creating simulated environments based on real-world
multi-agent systems, such as automated negotiation
scenarios, robotic coordination tasks, and competitive
gaming environments (e.g., poker, chess variants, or
trading markets). We simulate these environments with
imperfect information and perfect recall assumptions to
test the performance of our algorithms in finding optimal
strategies and Nash equilibria.

The key performance metrics used for evaluation in this
study encompass several critical aspects. Computational
efficiency is one of the primary metrics, focusing on the
time and memory consumption required by the
algorithms to compute strategies and equilibria across
various game settings. This helps to assess the scalability
and resource requirements of the proposed methods.
Additionally, convergence rates are crucial, as they
measure how quickly the algorithms reach optimal or
near-optimal solutions, especially in environments with
a large number of agents or high uncertainty. Finally, the
strategy quality is evaluated by comparing the
performance of agents using the computed strategies.
This includes assessing their ability to achieve high
payoffs or successfully meet their objectives in the
game, providing a direct measure of the effectiveness of
the strategies in real-world scenarios.

We also examine how our approach scales with
increasing complexity in terms of the number of agents,
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actions, and information sets. This helps to determine the
practical limitations of our methods and suggests areas
where further optimization or refinement may be
needed.

Real-World Applications

Finally, we explore the applicability of our methodology
in various real-world Al applications, highlighting its
relevance across multiple domains. In multi-agent
systems, agents are required to cooperate or compete
while operating under incomplete knowledge, utilizing
perfect recall to coordinate their actions effectively. In
autonomous systems, such as robotics, robots must plan
and execute strategies based on partial information,
drawing on past experiences to improve performance
over time. Another important domain is automated
negotiation, where agents must negotiate under
uncertainty, using their ability to remember past
interactions to devise better strategies for future
negotiations. Lastly, in the context of game theory and
strategic  decision-making, our methodology s
particularly useful in competitive games like online
gaming or trading platforms, where players have limited
knowledge about opponents but can retain memory of
past actions and decisions, enabling them to adapt their
strategies accordingly. These applications showcase the
potential of our approach in enhancing decision-making
processes in complex, dynamic environments.

By demonstrating the practical effectiveness of our
methodology in these real-world applications, we
provide valuable insights into the challenges and
opportunities associated with reasoning about strategic
behavior in imperfect information environments with
perfect recall.

The methodology presented here provides a
comprehensive framework for analyzing and reasoning
about strategic behavior in environments characterized
by imperfect information and perfect recall. Through a
combination of formal modeling, decidability analysis,
algorithmic design, and empirical evaluation, we aim to
shed light on the computational challenges and solutions
associated with strategic decision-making. The insights
derived from this research are applicable across a wide
range of Al applications, from multi-agent systems to
autonomous systems and game theory, contributing to
the advancement of intelligent decision-making
algorithms in complex, uncertain environments.

In this chapter, we present the results of our analysis on
reasoning about strategic behavior in games with
imperfect information and perfect recall. Our
experiments evaluate the computational feasibility of
solving decision problems related to strategic behavior,
including the existence of Nash equilibria, optimal
strategy computation, and game solvability in the
context of imperfect information games. The results are

analyzed based on various metrics, including
computational efficiency, strategy quality, and
performance in simulated environments. We also
examine the computational complexity of the problems
and provide comparisons of different algorithms used for
finding optimal strategies.

Decidability Analysis of Strategic Problems

The first set of experiments focuses on the decidability
of optimal strategy computation in imperfect
information games with perfect recall. Specifically, we
investigate the computational complexity of finding
Nash equilibria and optimal strategies in these
environments. Our findings are summarized in Table 4.1
below, which presents the decidability and
computational complexity of several strategic problems.

Table 4.1: Decidability and Computational

Complexity of Strategic Problems

Problem Decidabil | Computatio | Complex
ity nal ity Class

Complexity

Existence of | Decidable | Polynomial | PSPACE

Nash Time (PT)

Equilibria

Existence of | Decidable | Exponential | EXPTIM

Optimal Time (ET) E

Strategy

Game Decidable | Polynomial | PSPACE

Solvability Time (PT)

Nash Approxim | Polynomial | NP

Equilibria ate Time (PT)

Approximat | Decidable

ion

Computatio | Approxim | Polynomial | NP

n of | ate Time (PT)

Optimal Decidable

Strategies

Existence of Nash Equilibria: We observe that the
existence of Nash equilibria is decidable and can be
computed in polynomial time (PT) in most game settings
with imperfect information and perfect recall. This result
places this problem in the PSPACE complexity class,
indicating that it is solvable with polynomial space.
Existence of Optimal Strategy: Finding an optimal
strategy in these games is decidable but requires
exponential time (ET) in most cases, placing it in the
EXPTIME complexity class. This indicates that solving
this problem is computationally difficult, especially as
the game size grows.

Game Solvability: We find that the solvability of a



game can be determined in polynomial time, indicating
that it is computationally feasible to check if a given
game has an optimal strategy, provided that perfect
recall is assumed.

Nash Equilibria Approximation: For large-scale
games, we employ approximation algorithms to find
Nash equilibria. These algorithms can provide
approximate solutions in polynomial time, but the
quality of the approximation depends on the complexity
of the environment. These problems fall under the NP
complexity class.

Computation of Optimal Strategies: Similar to Nash
equilibria, computing optimal strategies in environments
with imperfect information is approximate but solvable
in polynomial time. However, the exactness of these
strategies depends on the size of the game and the agent's
knowledge.

Performance of Algorithmic Solutions

In this section, we present the performance of different
algorithms designed to compute optimal strategies and
Nash equilibria in imperfect information games with
perfect recall. We evaluate the following algorithms:
Iterative Regret Minimization, Belief-Based Reasoning,
and Deep Q-Networks (DQN) applied to strategic
decision-making. The performance metrics include
computation time, memory usage, and accuracy of
computed strategies.
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Table 4.2: Performance of Different Algorithms
Algorith | Computa | Mem | Accur | Comple
m tion ory acy xity
Time (s) | Usage | (%) Class
(MB)
Iterative 1.23 50 94.5 Polyno
Regret mial
Minimizat
ion

Belief- 2.56 75 92.3 Polyno
Based mial
Reasoning

Deep Q- |5.87 200 91.0 Expone
Networks ntial

(DQN)

Nash 0.35 30 96.0 Polyno
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ation

Optimal 8.45 250 98.5 Expone
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300
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Iterative Regret Minimization: This algorithm showed
the best performance in terms of computation time and
memory usage. It computes optimal strategies quickly
and with high accuracy (94.5%) in polynomial time. This
method is particularly useful for real-time applications
in strategic decision-making.

Belief-Based Reasoning: The Belief-Based Reasoning
algorithm, which models agents' beliefs and updates
them based on new information, performed slightly
slower than Iterative Regret Minimization, with a
slightly lower accuracy (92.3%). However, it still
operates within polynomial time and is useful for
environments where agents need to reason about their
beliefs continuously.

Deep Q-Networks (DQN): While Deep Q-Networks are
highly effective in complex environments, their
computation time and memory usage are significantly
higher, placing them in the exponential complexity class.
Despite their high resource requirements, they still
achieve a good accuracy of 91.0% and are particularly
useful for large-scale environments where traditional
algorithms struggle.

Nash Equilibrium Approximation: This algorithm is
highly efficient and accurate, with the ability to compute
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Nash equilibria in just 0.35 seconds. It uses minimal
memory and is well-suited for approximating equilibria
in large strategic environments where exact solutions
may be computationally intractable.

Optimal Strategy Computation: The optimal strategy
computation algorithm, while offering the highest
accuracy (98.5%), requires significantly more
computational resources and time, making it less
practical for real-time or resource-constrained
environments.

Empirical Evaluation in Simulated Environments
We also conducted empirical evaluations in simulated
environments to test the practical performance of our
algorithms in real-world strategic scenarios. The
environments included automated negotiation, multi-
agent coordination, and competitive gaming (e.g.,
poker and chess variants). The agents in these
simulations were required to make strategic decisions
under imperfect information, leveraging perfect recall.
Table 4.3: Empirical Evaluation Results

Environ | Algorith | Succ | Computa | Aver
ment m Used ess tion Time | age
Rate | (s) Rewa
(%) rd
(point
s)
Automate | lterative 872 |15 350
d Regret
Negotiati | Minimizat
on ion
Multi- Belief- 79.8 |3.2 450
Agent Based
Coordinat | Reasoning
ion
Competiti | Deep Q-1921 |75 2200
ve Poker | Networks
(DQN)
Chess Nash 96.0 (0.5 600
Variant Equilibriu
(Simulate | m
d) Approxim
ation

Computation Time (s)
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0
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Automated Negotiation: In the automated negotiation
environment, lterative Regret Minimization achieved an
87.2% success rate, demonstrating its efficiency in

dynamic, real-time decision-making scenarios.
Multi-Agent  Coordination:  For  multi-agent
coordination tasks, Belief-Based Reasoning was
effective in handling uncertainty, with a success rate of
79.8%. This indicates that belief updates and continuous
reasoning help agents cooperate effectively in uncertain
environments.

Competitive Poker: Deep Q-Networks (DQN)
outperformed other algorithms in the competitive poker
environment, achieving a success rate of 92.1%.
However, its computational overhead (7.5 seconds per
move) makes it less suited for real-time applications
where time constraints are critical.

Chess Variant: The Nash Equilibrium Approximation
method proved highly effective in strategic games like
chess, where exact optimal play is crucial. It achieved a
success rate of 96.0%, making it suitable for
environments where exact solutions are desired.

The results presented in this chapter indicate that
reasoning about strategic behavior in imperfect
information games with perfect recall is computationally
challenging but feasible with the right algorithms. While
problems like Nash equilibrium existence and game
solvability are solvable in polynomial time, computing
optimal strategies in these environments often requires
exponential time. Our empirical evaluations highlight
the effectiveness of different algorithms in various
strategic settings, with Iterative Regret Minimization
and Nash Equilibrium Approximation offering the best
trade-offs between efficiency and accuracy.

The next chapter will discuss these findings in more
detail and explore the implications for real-world
applications, including multi-agent systems, automated
negotiation, and gaming Al.

The results from our analysis of strategic behavior in
imperfect information games with perfect recall provide
valuable insights into the computational challenges and
practical solutions for reasoning about strategic
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decisions in complex environments. This chapter
discusses the implications of the findings, the limitations
of the study, and suggestions for future research.

Our analysis of the decidability and computational
complexity of strategic problems shows that while some
fundamental problems, such as the existence of Nash
equilibria and game solvability, are decidable and
solvable in polynomial time, other problems, like
computing optimal strategies, are more challenging. The
results clearly indicate that problems like optimal
strategy computation are in the EXPTIME complexity
class, making them computationally intensive and often
impractical for large-scale applications without further
optimizations or approximations.

These findings align with existing literature on game
theory and computational complexity, which suggests
that games with imperfect information and perfect recall
are computationally hard. However, our study also
demonstrates that under certain conditions, such as
specific game structures and assumptions about players'
knowledge and recall, decision-making tasks can still be
solved efficiently. The results on Nash equilibrium
approximation indicate that approximating optimal
strategies is often a feasible approach when exact
solutions are computationally expensive.

The performance of different algorithms in our study
reveals important trade-offs between computational
efficiency, memory usage, and accuracy. lterative
Regret Minimization, which operates in polynomial
time, provided the most efficient and accurate solutions
for many strategic tasks, such as Nash equilibrium
computation and real-time decision-making in
automated negotiation. This suggests that algorithms
that rely on iterative regret minimization may be
particularly useful for practical applications, especially
in scenarios where real-time decisions need to be made.
On the other hand, Deep Q-Networks (DQN) showed
promising results in environments requiring deep
reinforcement learning and learning optimal policies
through exploration, such as in competitive gaming
scenarios. While DQNs performed well in terms of
success rates, they require significant computational
resources and long processing times, making them less
suitable for real-time applications. This highlights a key
challenge in balancing performance and computational
resources, particularly for large-scale and highly
dynamic environments like multiplayer games and
simulations.

The Nash Equilibrium Approximation algorithm
demonstrated the ability to compute equilibria quickly
and with minimal computational resources. This
algorithm is particularly well-suited for strategic
scenarios in which exact equilibria are important but
real-time computation is a priority. However, the trade-
off with this approach is that it may not always produce
the most optimal strategies, especially in more complex

games.
The empirical evaluations provided further validation of
the theoretical results, demonstrating the applicability of
the algorithms in practical, real-world scenarios. The
success rates achieved by the different algorithms varied
depending on the environment, underscoring the
importance of context in choosing the most appropriate
solution.

For example, in automated negotiation, the Iterative
Regret Minimization algorithm outperformed others
due to its ability to quickly compute optimal strategies
while maintaining a high level of accuracy. In contrast,
the Deep Q-Networks algorithm performed well in
competitive settings like poker, where complex
decision-making and strategic exploration are required.
These findings emphasize that the choice of algorithm
depends heavily on the nature of the problem at hand and
the computational constraints of the environment.
Limitations of the Study

While the results are promising, several limitations of
the study must be acknowledged. First, our analysis was
limited to the computational feasibility of strategic
decision-making in games with imperfect information
and perfect recall. In real-world applications, such as
multi-agent systems, negotiation, and competitive
gaming, additional factors like agent communication,
changing environmental conditions, and evolving
strategies need to be considered. These factors could
significantly impact the performance and effectiveness
of the algorithms.

Second, the algorithms tested in this study are designed
for specific types of strategic games and may not
generalize well to other domains, such as economic
models or social network analysis, where the
assumptions of perfect recall and imperfect information
may not hold. Future research could explore how these
algorithms perform in broader settings with more
complex information structures.

Finally, the computational resources required by some of
the algorithms, particularly DQNs, limit their practical
application in resource-constrained environments.
Optimizations and parallelization techniques could be
explored to address these limitations and improve the
scalability of these methods.

This study provides a comprehensive analysis of the
computational complexity and practical considerations
involved in reasoning about strategic behavior in
imperfect information games with perfect recall. Our
results demonstrate that while certain strategic problems,
such as Nash equilibrium existence and game
solvability, can be solved efficiently, more complex
tasks like optimal strategy computation remain
computationally challenging.
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The performance of the algorithms varies based on the
type of strategic problem and the computational
resources available. Algorithms such as Iterative
Regret Minimization and Nash Equilibrium
Approximation offer efficient solutions for many real-
world  applications,  particularly in  dynamic
environments where real-time decision-making is
essential. In contrast, more computationally intensive
algorithms, like Deep Q-Networks, show promise in
complex scenarios but require substantial resources.

Our study highlights the trade-offs between efficiency,
accuracy, and computational resources in strategic
decision-making. It suggests that different algorithms
should be selected based on the specific characteristics
of the problem, such as the size of the game, the need for
real-time computation, and the available computational
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